
Guile-GnuTLS
Guile binding for GnuTLS

for version 4.0.0.2-6da1, 27 August 2023

Ludovic Courtès

This manual is last updated 27 August 2023 for version 4.0.0.2-6da1 of Guile-GnuTLS.

Copyright c© 2001–2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1

2 Guile Preparations . 2

3 Guile API Conventions . 3
3.1 Living on the cutting edge . 3
3.2 Enumerates and Constants . 3
3.3 Procedure Names . 4
3.4 Representation of Binary Data . 4
3.5 Input and Output . 4
3.6 Exception Handling . 5

4 Guile Examples . 7
4.1 Anonymous Authentication Guile Example . 7
4.2 Using GnuTLS as a cryptography library . 8

4.2.1 Hash Message Authentication Code . 8
4.2.2 Hash Digest Algorithms . 11
4.2.3 Authenticated Encryption . 12
4.2.4 Low-lovel encryption API . 15
4.2.5 Public key cryptography . 16
4.2.6 Generating random numbers . 19
4.2.7 Encoding binary data . 19

5 Guile Reference . 23

Appendix A Copying Information 39

Procedure Index . 47

Concept Index . 50

1

1 Preface

This manual describes Guile-GnuTLS, the GNU Guile (https://www.gnu.org/software/
guile/) Scheme programming interface to GnuTLS (https://gnutls.org). The reader
is assumed to have basic knowledge of the TLS protocol and GnuTLS library (see Section
“Introduction to GnuTLS” in GnuTLS Manual).

At this stage, not all the C functions are available from Scheme, but a large subset thereof
is available.

https://www.gnu.org/software/guile/
https://www.gnu.org/software/guile/
https://gnutls.org

2

2 Guile Preparations

The Guile bindings for GnuTLS are available for the Guile 3.0 and 2.2 series, as well as the
legacy 2.0 series.

By default they are installed into /usr/local/share/guile/site/). Normally Guile will
not find the module there without help. You may experience something like this:

$ guile

...

scheme@(guile-user)> (use-modules (gnutls))

ERROR: no code for module (gnutls)

There are two ways to solve this. The first is to make sure that when building Guile-GnuTLS,
the bindings will be installed in the same place where Guile looks. You may do this by using
the --with-guile-site-dir parameter as follows:

$./configure --with-guile-site-dir=no

This will instruct Guile-GnuTLS to attempt to install the bindings where Guile will look for
them. It will use guile-config info pkgdatadir to learn the path to use.

If Guile was installed into /usr, you may also install Guile-GnuTLS using the same prefix:

$./configure --prefix=/usr

If you want to specify the path to install the Guile bindings you can also specify the path
directly:

$./configure --with-guile-site-dir=/opt/guile/share/guile/site

The second solution requires some more work but may be easier to use if you do not have
system administrator rights to your machine. You need to instruct Guile so that it finds the
Guile-GnuTLS bindings. Either use the GUILE_LOAD_PATH environment variable as follows:

$ GUILE_LOAD_PATH="/usr/local/share/guile/site:$GUILE_LOAD_PATH" guile

scheme@(guile-user)> (use-modules (gnutls))

scheme@(guile-user)>

Alternatively, you can modify Guile’s %load-path variable (see Section “Build Config” in
The GNU Guile Reference Manual).

At this point, you might get an error regarding guile-gnutls-v-2 similar to:

gnutls.scm:361:1: In procedure dynamic-link in expression (load-extension "guile-gnutls-v-2" "scm_init_gnutls"):

gnutls.scm:361:1: file: "guile-gnutls-v-2", message: "guile-gnutls-v-2.so: cannot open shared object file: No such file or directory"

In this case, you will need to modify the run-time linker path, for example as follows:

$ LD_LIBRARY_PATH=/usr/local/lib GUILE_LOAD_PATH=/usr/local/share/guile/site guile

scheme@(guile-user)> (use-modules (gnutls))

scheme@(guile-user)>

To check that you got the intended GnuTLS library version, you may print the version
number of the loaded library as follows:

$ guile

scheme@(guile-user)> (use-modules (gnutls))

scheme@(guile-user)> (gnutls-version)

"4.0.0.2-6da1"

scheme@(guile-user)>

3

3 Guile API Conventions

This chapter details the conventions used by Guile API, as well as specificities of the mapping
of the C API to Scheme.

3.1 Living on the cutting edge

Some GnuTLS features have been introduced recently. To keep compatibility with older
GnuTLS versions, they may not all be available. If a GnuTLS feature is not available, then
its corresponding variable will not be exported by the (gnutls) module.

3.2 Enumerates and Constants

Lots of enumerates and constants are used in the GnuTLS C API. For each C enumerate type,
a disjoint Scheme type is used—thus, enumerate values and constants are not represented by
Scheme symbols nor by integers. This makes it impossible to use an enumerate value of the
wrong type on the Scheme side: such errors are automatically detected by type-checking.

The enumerate values are bound to variables exported by the (gnutls) module. These
variables are named according to the following convention:

• All variable names are lower-case; the underscore _ character used in the C API is
replaced by hyphen -.

• All variable names are prepended by the name of the enumerate type and the slash /

character.

• In some cases, the variable name is made more explicit than the one of the C API, e.g.,
by avoid abbreviations.

Consider for instance this C-side enumerate:

typedef enum

{

GNUTLS_CRD_CERTIFICATE = 1,

GNUTLS_CRD_ANON,

GNUTLS_CRD_SRP,

GNUTLS_CRD_PSK

} gnutls_credentials_type_t;

The corresponding Scheme values are bound to the following variables exported by the
(gnutls) module:

credentials/certificate

credentials/anonymous

credentials/srp

credentials/psk

Hopefully, most variable names can be deduced from this convention.

Scheme-side “enumerate” values can be compared using eq? (see Section “Equality” in The
GNU Guile Reference Manual). Consider the following example:

(let ((session (make-session connection-end/client)))

;;

Chapter 3: Guile API Conventions 4

;; ...

;;

;; Check the ciphering algorithm currently used by SESSION.

(if (eq? cipher/arcfour (session-cipher session))

(format #t "We’re using the ARCFOUR algorithm")))

In addition, all enumerate values can be converted to a human-readable string,
in a type-specific way. For instance, (cipher->string cipher/arcfour) yields
"ARCFOUR 128", while (key-usage->string key-usage/digital-signature) yields
"digital-signature". Note that these strings may not be sufficient for use in a user
interface since they are fairly concise and not internationalized.

3.3 Procedure Names

Unlike C functions in GnuTLS, the corresponding Scheme procedures are named in a way that
is close to natural English. Abbreviations are also avoided. For instance, the Scheme proce-
dure corresponding to gnutls_certificate_set_dh_params is named set-certificate-

credentials-dh-parameters!. The gnutls_ prefix is always omitted from variable names
since a similar effect can be achieved using Guile’s nifty binding renaming facilities, should
it be needed (see Section “Using Guile Modules” in The GNU Guile Reference Manual).

Often Scheme procedure names differ from C function names in a way that makes it clearer
what objects they operate on. For example, the Scheme procedure named set-session-

transport-port! corresponds to gnutls_transport_set_ptr, making it clear that this
procedure applies to session.

3.4 Representation of Binary Data

Many procedures operate on binary data. For instance, pkcs3-import-dh-parameters
expects binary data as input.

Binary data is represented on the Scheme side using bytevectors (see Section “Bytevectors”
in The GNU Guile Reference Manual). Homogeneous vectors such as SRFI-4 u8vectors
can also be used1.

As an example, generating and then exporting Diffie-Hellman parameters in the PEM format
can be done as follows:

(let* ((dh (make-dh-parameters 1024))

(pem (pkcs3-export-dh-parameters dh

x509-certificate-format/pem)))

(call-with-output-file "some-file.pem"

(lambda (port)

(uniform-vector-write pem port))))

3.5 Input and Output

The underlying transport of a TLS session can be any Scheme input/output port (see Section
“Ports and File Descriptors” in The GNU Guile Reference Manual). This has to be specified
using set-session-transport-port!.

1 Historically, SRFI-4 u8vectors are the closest thing to bytevectors that Guile 1.8 and earlier supported.

Chapter 3: Guile API Conventions 5

However, for better performance, a raw file descriptor can be specified, using set-session-

transport-fd!. For instance, if the transport layer is a socket port over an OS-provided
socket, you can use the port->fdes or fileno procedure to obtain the underlying file descrip-
tor and pass it to set-session-transport-fd! (see Section “Ports and File Descriptors”
in The GNU Guile Reference Manual). This would work as follows:

(let ((socket (socket PF_INET SOCK_STREAM 0))

(session (make-session connection-end/client)))

;;

;; Establish a TCP connection...

;;

;; Use the file descriptor that underlies SOCKET.

(set-session-transport-fd! session (fileno socket)))

Once a TLS session is established, data can be communicated through it (i.e., via the TLS
record layer) using the port returned by session-record-port:

(let ((session (make-session connection-end/client)))

;;

;; Initialize the various parameters of SESSION, set up

;; a network connection, etc.

;;

(let ((i/o (session-record-port session)))

(display "Hello peer!" i/o)

(let ((greetings (read i/o)))

;; ...

(bye session close-request/rdwr))))

Note that each write to the session record port leads to the transmission of an encrypted
TLS “Application Data” packet. In the above example, we create an Application Data
packet for the 11 bytes for the string that we write. This is not efficient both in terms of
CPU usage and bandwidth (each packet adds at least 5 bytes of overhead and can lead to
one write system call), so we recommend that applications do their own buffering.

A lower-level I/O API is provided by record-send and record-receive! which take a
bytevector (or a SRFI-4 vector) to represent the data sent or received. While it might
improve performance, it is much less convenient than the session record port and should
rarely be needed.

3.6 Exception Handling

GnuTLS errors are implemented as Scheme exceptions (see Section “Exceptions” in The
GNU Guile Reference Manual). Each time a GnuTLS function returns an error, an exception
with key gnutls-error is raised. The additional arguments that are thrown include an
error code and the name of the GnuTLS procedure that raised the exception. The error

Chapter 3: Guile API Conventions 6

code is pretty much like an enumerate value: it is one of the error/ variables exported by
the (gnutls) module (see Section 3.2 [Enumerates and Constants], page 3). Exceptions can
be turned into error messages using the error->string procedure.

The following examples illustrates how GnuTLS exceptions can be handled:

(let ((session (make-session connection-end/server)))

;;

;; ...

;;

(catch ’gnutls-error

(lambda ()

(handshake session))

(lambda (key err function . currently-unused)

(format (current-error-port)

"a GnuTLS error was raised by ‘~a’: ~a~%"

function (error->string err)))))

Again, error values can be compared using eq?:

;; ‘gnutls-error’ handler.

(lambda (key err function . currently-unused)

(if (eq? err error/fatal-alert-received)

(format (current-error-port)

"a fatal alert was caught!~%")

(format (current-error-port)

"something bad happened: ~a~%"

(error->string err))))

Note that the catch handler is currently passed only 3 arguments but future versions might
provide it with additional arguments. Thus, it must be prepared to handle more than 3
arguments, as in this example.

7

4 Guile Examples

This chapter provides examples that illustrate common use cases.

4.1 Anonymous Authentication Guile Example

Anonymous authentication is very easy to use. No certificates are needed by the commu-
nicating parties. Yet, it allows them to benefit from end-to-end encryption and integrity
checks.

The client-side code would look like this (assuming some-socket is bound to an open socket
port):

;; Client-side.

(let ((client (make-session connection-end/client)))

;; Use the default settings.

(set-session-default-priority! client)

;; Don’t use certificate-based authentication.

(set-session-certificate-type-priority! client ’())

;; Request the "anonymous Diffie-Hellman" key exchange method.

(set-session-kx-priority! client (list kx/anon-dh))

;; Specify the underlying socket.

(set-session-transport-fd! client (fileno some-socket))

;; Create anonymous credentials.

(set-session-credentials! client

(make-anonymous-client-credentials))

;; Perform the TLS handshake with the server.

(handshake client)

;; Send data over the TLS record layer.

(write "hello, world!" (session-record-port client))

;; Terminate the TLS session.

(bye client close-request/rdwr))

The corresponding server would look like this (again, assuming some-socket is bound to a
socket port):

;; Server-side.

(let ((server (make-session connection-end/server)))

(set-session-default-priority! server)

(set-session-certificate-type-priority! server ’())

(set-session-kx-priority! server (list kx/anon-dh))

Chapter 4: Guile Examples 8

;; Specify the underlying transport socket.

(set-session-transport-fd! server (fileno some-socket))

;; Create anonymous credentials.

(let ((cred (make-anonymous-server-credentials))

(dh-params (make-dh-parameters 1024)))

;; Note: DH parameter generation can take some time.

(set-anonymous-server-dh-parameters! cred dh-params)

(set-session-credentials! server cred))

;; Perform the TLS handshake with the client.

(handshake server)

;; Receive data over the TLS record layer.

(let ((message (read (session-record-port server))))

(format #t "received the following message: ~a~%"

message)

(bye server close-request/rdwr)))

This is it!

4.2 Using GnuTLS as a cryptography library

The low-level functions in GnuTLS can be accessed for various tasks.

4.2.1 Hash Message Authentication Code

The library provides support for Hash Message Authentication Code (hmac). This API
provides a way to hash a message in a way that is only reproducible with the knowledge of
a secret.

This first example demonstrates how to use hmac-fast to hash a bytevector in memory.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

Chapter 4: Guile Examples 9

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim) (rnrs bytevectors) (gnutls))

(format #t "What is the secret?\n")

(let ((secret (read-line)))

(format #t "What message do you want to hash?\n")

(let ((message (read-line)))

(format #t "The digest is: ~s\n"

(hmac-direct mac/sha256

(string->utf8 secret)

(string->utf8 message)))))

The next example shows how to hash a whole file that might not fit in memory.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(rnrs bytevectors)

(gnutls))

(format #t "What is the secret?\n")

(let ((secret (read-line)))

(format #t "Which file do you want to hash?\n")

(let ((file-name (read-line)))

;; Create a new state that will be reused when new bytes are

;; available.

(let ((state (make-hmac mac/sha256 (string->utf8 secret))))

(call-with-input-file file-name

(lambda (port)

Chapter 4: Guile Examples 10

(let hash-all ()

;; Read raw bytes from the file.

(let ((next (get-bytevector-some port)))

(if (eof-object? next)

;; No more data in the file

(format #t "The digest is: ~s\n"

(hmac-output state))

(begin

;; Hash the bytes we got, and continue.

(hmac! state next)

(hash-all))))))

#:binary #t))))

The final example shows how you can re-use a state to continue hashing different inputs.
This requires the hmac-copy function, which is not always available (see Section 3.1 [Living
on the cutting edge], page 3).

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (rnrs bytevectors) (gnutls))

(when (defined? ’hmac-copy)

(let ((hash-with-prefix

(lambda (secret prefix)

;; Return a hasher of a string as a 1-argument function,

;; by first adding a prefix to it.

(let ((tag (make-prompt-tag)))

(call-with-prompt

tag

(lambda ()

(let ((state (make-hmac mac/sha256 secret)))

(hmac! state prefix)

Chapter 4: Guile Examples 11

(let ((line (abort-to-prompt tag)))

;; The flow may reenter multiple times here, so

;; we have to copy the hmac state.

(let ((copy (hmac-copy state)))

(hmac! copy line)

(hmac-output copy)))))

(lambda (k) k))))))

;; So if "Prefix " is the prefix, it will be hashed only once.

(let ((expected-output-1

(hmac-direct mac/sha256

(string->utf8 "secret!")

(string->utf8 "Prefix and then some")))

(expected-output-2

(hmac-direct mac/sha256

(string->utf8 "secret!")

(string->utf8 "Prefix and other data"))))

;; hasher is a 1-argument function that computes the hash of

;; "Prefix " + its argument (as bytevectors), but re-uses the

;; state it has after hashing "Prefix ".

(let ((hasher (hash-with-prefix (string->utf8 "secret!")

(string->utf8 "Prefix "))))

(let ((output-1 (hasher (string->utf8 "and then some")))

(output-2 (hasher (string->utf8 "and other data"))))

(unless (and (equal? output-1 expected-output-1)

(equal? output-2 expected-output-2))

(error "This cannot happen.")))))))

4.2.2 Hash Digest Algorithms

The API for hash algorithm is similar to that for hmac, except that there is no secret data
to reproduce the hash. So for instance, the second hmac example becomes (see Section 4.2.1
[Hash Message Authentication Code], page 8):

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

Chapter 4: Guile Examples 12

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(rnrs bytevectors)

(gnutls))

(format #t "Which file do you want to hash?\n")

(let ((file-name (read-line)))

;; Create a new state that will be reused when new bytes are

;; available.

(let ((state (make-hash digest/sha256)))

(call-with-input-file file-name

(lambda (port)

(let hash-all ()

;; Read raw bytes from the file.

(let ((next (get-bytevector-some port)))

(if (eof-object? next)

;; No more data in the file

(format #t "The digest is: ~s\n"

(hash-output state))

(begin

;; Hash the bytes we got, and continue.

(hash! state next)

(hash-all))))))

#:binary #t)))

4.2.3 Authenticated Encryption

The goal of authenticated encryption is to make sure that the data has been encrypted by
a party that knows a shared secret. The encryption and decryption procedures are very
similar. Both parties must know a shared secret key and a nonce. The nonce is a value that
must only be used once to encrypt data. The nonce may be as long as you want, but the
secret key must be the exact size expected by the cipher algorithm.

The API can also use extra authentication data, that can change on a packet-by-packet
basis, whatever your definition for a packet is.

To use the API, the cipher algorithm must be compatible with AEAD. When it is, it defines
a default tag size. You can override the tag size, or use the 0 value to use the default tag
size.

This example encrypts a file:

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

Chapter 4: Guile Examples 13

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(rnrs bytevectors)

(gnutls))

(format #t "What is the secret?\n")

(let ((secret (read-line)))

(set! secret

(string->utf8 secret))

(unless (equal? (bytevector-length secret)

(cipher-key-size cipher/aes-256-gcm))

(error "incorrect key length"))

(format #t "Which file do you want to encrypt?\n")

(let ((file-name (read-line)))

;; Create a new state that will be reused when new bytes are

;; available.

(let ((cipher (make-aead-cipher cipher/aes-256-gcm secret)))

(call-with-output-file (string-append file-name ".encrypted~")

(lambda (out)

(call-with-input-file file-name

(lambda (in)

;; Read raw bytes from the file.

(let do-encrypt ()

(let ((next (get-bytevector-some in)))

(unless (eof-object? next)

(let ((encrypted

(aead-cipher-encrypt

cipher

;; Do not re-use the same nonce twice. The nonce

;; size is constrained; for aes256/GCM, this is 12

;; bytes.

(string->utf8 "12 randbytes")

(string->utf8 "Additional secret data")

0

next)))

Chapter 4: Guile Examples 14

(put-bytevector out encrypted)

(do-encrypt))))))

#:binary #t))

#:binary #t))

(rename-file (string-append file-name ".encrypted~")

(string-append file-name ".encrypted"))))

And this example decrypts the same file. Please note that the decrypted file is written to
disk, which is acceptable for this simple example:

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(rnrs bytevectors)

(gnutls))

(format #t "What is the secret?\n")

(let ((secret (read-line)))

(set! secret

(string->utf8 secret))

(unless (equal? (bytevector-length secret)

(cipher-key-size cipher/aes-256-gcm))

(error "incorrect key length"))

(format #t "Which file do you want to decrypt?\n")

(let ((file-name (read-line)))

;; Create a new state that will be reused when new bytes are

;; available.

(let ((cipher (make-aead-cipher cipher/aes-256-gcm secret)))

(call-with-output-file (string-append file-name ".decrypted~")

(lambda (out)

(call-with-input-file file-name

Chapter 4: Guile Examples 15

(lambda (in)

;; Read raw bytes from the file.

(let do-decrypt ()

(let ((next (get-bytevector-some in)))

(unless (eof-object? next)

(let ((decrypted

(aead-cipher-decrypt

cipher

;; The same value as used at encryption time:

(string->utf8 "12 randbytes")

(string->utf8 "Additional secret data")

0

next)))

(put-bytevector out decrypted)

(do-decrypt))))))

#:binary #t))

#:binary #t))

(rename-file (string-append file-name ".decrypted~")

(string-append file-name ".decrypted"))))

4.2.4 Low-lovel encryption API

In some cases, you may want to use a lower-level encryption API. In this example, the data
to encrypt spans an integer number of blocks. You need to specify the initialization vector,
to seed the encryption, and a private key.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(rnrs bytevectors)

(gnutls))

Chapter 4: Guile Examples 16

;; To define a symmetric encryption cipher context, you need an algorithm, a

;; key, and an initialization vector.

(define algorithm cipher/aes-128-cbc)

(define cipher

(let ((initialisation-vector

(string->utf8 "Initialisation.."))

(key

(string->utf8 "The 16-byte key.")))

(unless (eqv? (bytevector-length initialisation-vector)

(cipher-iv-size algorithm))

(error "Incorrect initialization vector size."))

(unless (eqv? (bytevector-length key)

(cipher-key-size algorithm))

(error "Incorrect key size."))

(make-cipher algorithm key initialisation-vector)))

;; The context may be used to encrypt and decrypt data, if the data spans an

;; integer number of blocks.

(define block-size

(cipher-block-size (cipher-algorithm cipher)))

(define data

(string->utf8 "The data to encrypt must be a bytevector \

whose length must be a multiple of the block size. If you \

want to use the low-level cipher API, you must manage the \

data padding yourself, and know the message length."))

(define encrypted

(cipher-encrypt cipher data))

(define decrypted

(cipher-decrypt cipher encrypted))

(unless (equal? data decrypted)

(error "data decryption failed."))

4.2.5 Public key cryptography

The following example shows how to use elliptic curve cryptography with a private key.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

Chapter 4: Guile Examples 17

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 rdelim)

(ice-9 binary-ports)

(ice-9 match)

(rnrs bytevectors)

(gnutls))

(define (read-curve)

(format #t "curve:\n")

(string->ecc-curve (read-line)))

(define (read-parameter name)

(format #t "~a:\n" name)

(base64-decode (read-line)))

(define (read-parameters)

(let* ((curve (read-curve))

(x (read-parameter ’x))

(y (read-parameter ’y))

(k (read-parameter ’k)))

(values curve x y k)))

(define private-key

(receive (curve x y k) (read-parameters)

(let ((key (import-raw-ecc-private-key curve x y k)))

key)))

(define message (string->utf8 "Hello, world!"))

(define signature

(private-key-sign-data private-key

sign-algorithm/ecdsa-secp521r1-sha512

message

’()))

(define public-key

Chapter 4: Guile Examples 18

(let ((key (private-key->public-key private-key

(list key-usage/digital-signature))))

key))

(public-key-verify-data public-key sign-algorithm/ecdsa-secp521r1-sha512

message signature)

(format #t "I could sign a message with that key.\n")

The next example shows how to generate a private key.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (ice-9 receive)

(rnrs bytevectors)

(gnutls))

(receive (curve x y k)

(let ((key (generate-private-key

pk-algorithm/ecc ecc-curve/secp521r1)))

(private-key-export-raw-ecc key))

(write

‘((curve . ,(ecc-curve->string curve))

(x . ,(base64-encode x))

(y . ,(base64-encode y))

(k . ,(base64-encode k))))

(newline))

In addition, abstract public or private keys can be obtained from X509 certificate and private
key, with x509-certificate->public-key and x509-private-key->private-key.

Chapter 4: Guile Examples 19

4.2.6 Generating random numbers

Gnutls lets you generate different kinds of pseudo-random numbers, depending on the
implications if it is guessed. Here is how you generate a random number with the lowest
security requirements:

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (rnrs bytevectors)

(gnutls))

(define random-data

(gnutls-random

;; Choose a security level: /nonce, /random or /key.

random-level/nonce

;; Choose the number of bytes:

4))

(let ((dice-roll

(remainder

(car (bytevector->uint-list random-data (endianness little) 4))

6)))

(format #t "You roll a ~a.\n" (+ dice-roll 1)))

4.2.7 Encoding binary data

When working with gnutls, you may come across a lot of binary data, in the form of guile
bytevectors. Base16 and base64 are popular encoding schemes for binary data.

This example shows how to encode and decode binary data to and from base16.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

Chapter 4: Guile Examples 20

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (rnrs bytevectors)

(gnutls))

(define data

(string->utf8 "Hello, world!"))

(define encoded

(hex-encode data))

(define decoded

(hex-decode encoded))

(format #t "The base16 encoding is: ~s\n"

encoded)

(format #t "Decoding it back gives: ~s\n"

(utf8->string decoded))

This example shows how to encode and decode binary data to and from base64.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Chapter 4: Guile Examples 21

(use-modules (rnrs bytevectors)

(gnutls))

(define data

(string->utf8 "Hello, world!"))

(define encoded

(base64-encode data))

(define decoded

(base64-decode encoded))

(format #t "The base64 encoding is: ~s\n"

encoded)

(format #t "Decoding it back gives: ~s\n"

(utf8->string decoded))

Unfortunately, gnutls does not provide an API to encode data to the popular base64-url
encoding. However, it is possible to convert from base64 to base64-url and back.

;;; GnuTLS --- Guile bindings for GnuTLS.

;;; Copyright (C) 2023 Free Software Foundation, Inc.

;;;

;;; GnuTLS is free software; you can redistribute it and/or

;;; modify it under the terms of the GNU Lesser General Public

;;; License as published by the Free Software Foundation; either

;;; version 2.1 of the License, or (at your option) any later version.

;;;

;;; GnuTLS is distributed in the hope that it will be useful,

;;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

;;; Lesser General Public License for more details.

;;;

;;; You should have received a copy of the GNU Lesser General Public

;;; License along with GnuTLS; if not, write to the Free Software

;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(use-modules (rnrs bytevectors)

(gnutls))

(define (base64->base64-url str)

;; Replace ’+’ with ’-’, ’/’ with ’_’, and remove the ’=’ padding

;; characters.

(string-filter

(lambda (c)

(not (eqv? c #\=)))

Chapter 4: Guile Examples 22

(string-map

(lambda (c)

(case c

((#\+) #\-)

((#\/) #_)

(else c)))

str)))

(define (base64-url->base64 str)

;; Replace ’-’ with ’+’, ’_’ with ’/’, and add padding characters.

(string-append

(string-map

(lambda (c)

(case c

((#\-) #\+)

((#_) #\/)

(else c)))

str)

(case (remainder (string-length str) 4)

((2) "==")

((3) "=")

(else ""))))

(define data

(string->utf8 "~~ Hello, world! ~~"))

(define encoded

(base64->base64-url (base64-encode data)))

(define decoded

(base64-decode (base64-url->base64 encoded)))

(format #t "The base64-url encoding is: ~s\n"

encoded)

(format #t "Decoding it back gives: ~s\n"

(utf8->string decoded))

23

5 Guile Reference

This chapter lists the Scheme procedures exported by the (gnutls) module (see Section
“Using the Guile Module System” in The GNU Guile Reference Manual).

[Scheme Procedure]gnutls-random level length
Return a random vector of length bytes.

[Scheme Procedure]x509-private-key->private-key privkey flags
Convert the X509 private key, privkey, to an abstract private key.

[Scheme Procedure]x509-certificate->public-key crt
Convert the X509 certificate, crt, to an abstract public key.

[Scheme Procedure]public-key-verify-hash key algo hash-data signature
Verify the hash data signature.

[Scheme Procedure]public-key-verify-data key algo data signature
Verify the data signature.

[Scheme Procedure]public-key-encrypt-data key data
Encrypt the data.

[Scheme Procedure]private-key-decrypt-data key data
Decrypt the data.

[Scheme Procedure]private-key-sign-hash key algo hash-data flags
Sign the hash data and return the signature. flags is a list of privkey flags.
Available flags are: privkey/sign-flag-tls1-rsa privkey/sign-flag-rsa-pss

flag-reproducible.

[Scheme Procedure]private-key-sign-data key algo data flags
Sign the data and return the signature. flags is a list of privkey flags.Available
flags are: privkey/sign-flag-tls1-rsa privkey/sign-flag-rsa-pss

privkey/flag-reproducible.

[Scheme Procedure]generate-private-key algo bits-or-curve
Return a new private key.

[Scheme Procedure]public-key-preferred-hash-algorithm key
Return the preferred hash algorithm for key, and a boolean indicating whether this
algorithm is mandatory.

[Scheme Procedure]private-key-pk-algorithm key
Return the private key algorithm used by key and the number of bits.

[Scheme Procedure]public-key-pk-algorithm key
Return the public key algorithm used by key and the number of bits.

[Scheme Procedure]public-key-export key format
Export a public key to PEM or DER.

Chapter 5: Guile Reference 24

[Scheme Procedure]private-key->public-key key usage
Return the public part of key. usage is a list of key usage flags, such as
key-usage/digital-signature.

[Scheme Procedure]private-key-export-raw-rsa key
Export a RSA private key, and return 8 parameters: M, E, D, P, Q, U, E1, E2.

[Scheme Procedure]private-key-export-raw-ecc key
Export a ECC private key, and return 4 parameters: the curve, X, Y and K.

[Scheme Procedure]private-key-export-raw-dsa key
Export a DSA private key, and return 5 parameters: P, Q, G, Y and X.

[Scheme Procedure]public-key-export-raw-rsa key
Export a RSA public key, and return 2 parameters: M and E.

[Scheme Procedure]public-key-export-raw-ecc key
Export a ECC public key, and return 3 parameters: the curve, X and Y.

[Scheme Procedure]public-key-export-raw-dsa key
Export a DSA public key, and return 4 parameters: P, Q, G and Y.

[Scheme Procedure]import-raw-rsa-private-key m e d p q u e1 e2
Create a new RSA private key. d starting at 3.7.0, and u, e1 and e2 are optional, pass
#f to not set them.

[Scheme Procedure]import-raw-ecc-private-key curve x y k
Create a new ECC private key.

[Scheme Procedure]import-raw-dsa-private-key p q g y x
Create a new DSA private key. Starting at 3.7.0, the y parameter is optional, pass #f
if unknown.

[Scheme Procedure]import-raw-rsa-public-key m e
Create a new RSA public key.

[Scheme Procedure]import-raw-ecc-public-key curve x y
Create a new ECC public key.

[Scheme Procedure]import-raw-dsa-public-key p q g y
Create a new DSA public key.

[Scheme Procedure]hex-decode data
Try and decode data from base16, return it as a bytevector.

[Scheme Procedure]base64-decode data
Try and decode data, return it as a bytevector.

[Scheme Procedure]base64-encode data
Return as an ASCII string the base64 encoding of data.

[Scheme Procedure]hex-encode data
Return as an ASCII string the base16 encoding of data.

Chapter 5: Guile Reference 25

[Scheme Procedure]ecc-curve-size curve
Return the size of curve, in bytes (0 on failure).

[Scheme Procedure]sign-algorithm-is-secure? sign for-certs
Check whether the sign algorithm is considered safe. for-certs? is #t if the security is
for signing a certificate, or #f for other data.

[Scheme Procedure]sign-algorithm-supports? sign pk
Check whether the sign algorithm can be used with the pk public-key algorithm.

[Scheme Procedure]ecc-curve->pk-algorithm curve
Return the public key algorithm that can be used with curve.

[Scheme Procedure]sign-algorithm->pk-algorithm sign
Return a public key algorithm that can sign data with the sign algorithm.

[Scheme Procedure]oid->ecc-curve oid
Return the ECC curve identified by oid.

[Scheme Procedure]oid->sign-algorithm oid
Return the sign algorithm identified by oid.

[Scheme Procedure]oid->pk-algorithm oid
Return the public key algorithm identified by oid.

[Scheme Procedure]sign-algorithm->digest-algorithm sign
Return the digest algorithm used for the sign algorithm.

[Scheme Procedure]pk-algorithm->sign-algorithm pk digest
Return the signature algorithm compatible with the pk public-key algorithm and the
digest algorithm.

[Scheme Procedure]ecc-curve-list
Return the list of ECC curves. This function is not thread-safe.

[Scheme Procedure]sign-algorithm-list
Return the list of public key algorithms. This function is not thread-safe.

[Scheme Procedure]pk-algorithm-list
Return the list of public key algorithms. This function is not thread-safe.

[Scheme Procedure]ecc-curve->oid curve
Return the OID allocated to curve.

[Scheme Procedure]sign-algorithm->oid algo
Return the OID allocated to algo.

[Scheme Procedure]pk-algorithm->oid algorithm
Return the OID associated to algorithm.

[Scheme Procedure]string->ecc-curve id
Return ECC curve identified by id.

Chapter 5: Guile Reference 26

[Scheme Procedure]string->sign-algorithm id
Return the signature algorithm identified by id.

[Scheme Procedure]string->pk-algorithm id
Return the public key algorithm identified by id.

[Scheme Procedure]cipher-algorithm handle
Return the underlying cipher algorithm.

[Scheme Procedure]cipher-tag handle tagsize
Read a tag.

[Scheme Procedure]cipher-add-auth! handle data
Add authentication data.

[Scheme Procedure]cipher-set-iv! handle data
Set the IV data.

[Scheme Procedure]cipher-decrypt handle data
Decrypt the data.

[Scheme Procedure]cipher-encrypt handle data
Encrypt the data.

[Scheme Procedure]make-cipher algorithm key iv
Return a new cipher context, using the cipher algorithm.

[Scheme Procedure]aead-cipher-algorithm handle
Return the underlying AEAD cipher algorithm.

[Scheme Procedure]aead-cipher-decrypt handle nonce auth tagsize data
Decrypt the data, checking that the authentication data auth is correct. Pass 0 as
tagsize to use the default tag size for the underlying algorithm.

[Scheme Procedure]aead-cipher-encrypt handle nonce auth tagsize data
Encrypt the data, with additional auth data. Use 0 for tagsize to use the default tag
size for the algorithm.

[Scheme Procedure]make-aead-cipher algorithm key
Return a new AEAD cipher context, using the AEAD algorithm, and with key (a
bytevector) as the secret.

[Scheme Procedure]cipher-iv-size algorithm
Return the length of the initialization vector for algorithm.

[Scheme Procedure]cipher-block-size algorithm
Return the required block size for algorithm.

[Scheme Procedure]cipher-key-size algorithm
Return the required key size for algorithm.

[Scheme Procedure]cipher-tag-size algorithm
Return the default tag size for algorithm, or 0 if this is not an AEAD algorithm.

Chapter 5: Guile Reference 27

[Scheme Procedure]hash-output hash
Return the digest of the current hash state.

[Scheme Procedure]hash-length algorithm
Return the length of the algorithm digest output, or 0 if unavailable.

[Scheme Procedure]hash-algorithm hash
Return the algorithm that hash has been built for.

[Scheme Procedure]hash! hash text
Hash the text bytes in the hash state.

[Scheme Procedure]make-hash algorithm
Start a hash operation according to algorithm.

[Scheme Procedure]hash-direct algorithm text
Hash text according to algorithm. Return the digest as a bytevector.

[Scheme Procedure]mac-nonce-size algorithm
Return the length of the nonce for algorithm, or 0 if unavailable.

[Scheme Procedure]set-hmac-nonce! hmac nonce
Set nonce in the hmac state.

[Scheme Procedure]hmac-output hmac
Return the digest of the current hmac state.

[Scheme Procedure]hmac-length algorithm
Return the length of the algorithm HMAC output, or 0 if unavailable.

[Scheme Procedure]hmac-algorithm hmac
Return the algorithm that hmac has been built for.

[Scheme Procedure]hmac! hmac text
Hash the text bytes in the hmac state.

[Scheme Procedure]make-hmac algorithm key
Return a new hmac object that can be fed further input to hash. Use the given MAC
or HMAC algorithm, and use key (a bytevector) as the secret.

[Scheme Procedure]hmac-direct algorithm key text
Hash text with algorithm, and the secret key. It will not work if algorithm requires a
nonce, such as UMAC or GMAC. Both key and text must be bytevectors.

[Scheme Procedure]set-log-level! level
Enable GnuTLS logging up to level (an integer).

[Scheme Procedure]set-log-procedure! proc
Use proc (a two-argument procedure) as the global GnuTLS log procedure.

[Scheme Procedure]%set-certificate-credentials-openpgp-keys! cred pub
sec

Use certificate pub and secret key sec in certificate credentials cred.

Chapter 5: Guile Reference 28

[Scheme Procedure]%openpgp-keyring-contains-key-id? keyring id
Return #f if key ID id is in keyring, #f otherwise.

[Scheme Procedure]import-openpgp-keyring data format
Import data (a u8vector) according to format and return the imported keyring.

[Scheme Procedure]%openpgp-certificate-usage key
Return a list of values denoting the key usage of key.

[Scheme Procedure]%openpgp-certificate-version key
Return the version of the OpenPGP message format (RFC2440) honored by key.

[Scheme Procedure]%openpgp-certificate-algorithm key
Return two values: the certificate algorithm used by key and the number of bits used.

[Scheme Procedure]%openpgp-certificate-names key
Return the list of names for key.

[Scheme Procedure]%openpgp-certificate-name key index
Return the indexth name of key.

[Scheme Procedure]%openpgp-certificate-fingerprint key
Return a new u8vector denoting the fingerprint of key.

[Scheme Procedure]%openpgp-certificate-fingerprint! key fpr
Store in fpr (a u8vector) the fingerprint of key. Return the number of bytes stored in
fpr.

[Scheme Procedure]%openpgp-certificate-id! key id
Store the ID (an 8 byte sequence) of certificate key in id (a u8vector).

[Scheme Procedure]%openpgp-certificate-id key
Return the ID (an 8-element u8vector) of certificate key.

[Scheme Procedure]%import-openpgp-private-key data format [pass]
Return a new OpenPGP private key object resulting from the import of data (a
uniform array) according to format. Optionally, a passphrase may be provided.

[Scheme Procedure]%import-openpgp-certificate data format
Return a new OpenPGP certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]set-x509-certificate-serial! cert serial
Set the serial number of cert to the bytevector serial.

[Scheme Procedure]x509-certificate-serial cert
Return the serial number of cert.

[Scheme Procedure]set-x509-certificate-ca-status! cert status
Set the CA status flag of cert to status, either #t or #f.

[Scheme Procedure]x509-certificate-ca-status cert
Return the CA status of cert.

Chapter 5: Guile Reference 29

[Scheme Procedure]set-x509-certificate-expiration-time! cert time
Set the expiration time of cert to time.

[Scheme Procedure]x509-certificate-expiration-time cert
Return the expiration time of cert.

[Scheme Procedure]set-x509-certificate-activation-time! cert time
Set the activation time of cert to time.

[Scheme Procedure]x509-certificate-activation-time cert
Return the activation time of cert.

[Scheme Procedure]set-x509-certificate-key! cert key
Set the public parameters of cert using the private key key.

[Scheme Procedure]set-x509-certificate-dn-by-oid! cert oid name
Set the part of the name of the certificate request subject for cert corresponding to
oid to the string name.

[Scheme Procedure]sign-x509-certificate! cert issuer key
Sign cert using cert, also a certificate, and key, the issuer’s private key.

[Scheme Procedure]x509-certificate-fingerprint cert algo
Return the fingerprint (a u8vector) of the certificate cert, computed using the digest
algorithm algo.

[Scheme Procedure]x509-certificate-subject-alternative-name cert index
Return two values: the alternative name type for cert (i.e., one of the x509-subject-
alternative-name/ values) and the actual subject alternative name (a string) at
index. Both values are #f if no alternative name is available at index.

[Scheme Procedure]set-x509-certificate-subject-key-id! cert id
Set the subject key ID for cert to the bytevector id.

[Scheme Procedure]x509-certificate-subject-key-id cert
Return the subject key ID (a u8vector) for cert.

[Scheme Procedure]x509-certificate-authority-key-id cert
Return the key ID (a u8vector) of the X.509 certificate authority of cert.

[Scheme Procedure]x509-certificate-key-id cert
Return a statistically unique ID (a u8vector) for cert that depends on its public key
parameters. This is normally a 20-byte SHA-1 hash.

[Scheme Procedure]set-x509-certificate-version! cert version
Set the version of cert to version.

[Scheme Procedure]x509-certificate-version cert
Return the version of cert.

[Scheme Procedure]set-x509-certificate-key-usage! cert flags
Set the key usage of cert to flags, a list of usage flags.

Chapter 5: Guile Reference 30

[Scheme Procedure]x509-certificate-key-usage cert
Return the key usage of cert (i.e., a list of key-usage/ values), or the empty list if
cert does not contain such information.

[Scheme Procedure]x509-certificate-public-key-algorithm cert
Return two values: the public key algorithm (i.e., one of the pk-algorithm/ values)
of cert and the number of bits used.

[Scheme Procedure]x509-certificate-signature-algorithm cert
Return the signature algorithm used by cert (i.e., one of the sign-algorithm/ values).

[Scheme Procedure]x509-certificate-matches-hostname? cert hostname
Return true if cert matches hostname, a string denoting a DNS host name. This is the
basic implementation of RFC 2818 (https://tools.ietf.org/html/rfc2818) (aka.
HTTPS).

[Scheme Procedure]x509-certificate-issuer-dn-oid cert index
Return the OID (a string) at index from cert’s issuer DN. Return #f if no OID is
available at index.

[Scheme Procedure]x509-certificate-dn-oid cert index
Return OID (a string) at index from cert. Return #f if no OID is available at index.

[Scheme Procedure]x509-certificate-issuer-dn cert
Return the distinguished name (DN) of X.509 certificate cert.

[Scheme Procedure]x509-certificate-dn cert
Return the distinguished name (DN) of X.509 certificate cert. The form of the DN is
as described in RFC 2253 (https://tools.ietf.org/html/rfc2253).

[Scheme Procedure]pkcs8-import-x509-private-key data format [pass
[encrypted]]

Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format. Optionally, if pass is not #f, it should be a string denoting
a passphrase. encrypted tells whether the private key is encrypted (#t by default).

[Scheme Procedure]export-x509-private-key key format
Return a bytevector resulting from the export of key (an X.509 private key) according
to format.

[Scheme Procedure]import-x509-private-key data format
Return a new X.509 private key object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]generate-x509-private-key algorithm bits flags
Return a new X.509 private key object of size bits generated using algorithm, a
pk-algorithm enum value, andflags, a list of privkey enum values.

[Scheme Procedure]export-x509-certificate cert format
Return a bytevector resulting from the export of cert (an X.509 certificate) according
to format.

https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2253

Chapter 5: Guile Reference 31

[Scheme Procedure]import-x509-certificate data format
Return a new X.509 certificate object resulting from the import of data (a uniform
array) according to format.

[Scheme Procedure]make-x509-certificate
Return a new, empty X.509 certificate object.

[Scheme Procedure]server-session-psk-username session
Return the username associated with PSK server session session.

[Scheme Procedure]set-psk-client-credentials! cred username key
key-format

Set the client credentials for cred, a PSK client credentials object.

[Scheme Procedure]make-psk-client-credentials
Return a new PSK client credentials object.

[Scheme Procedure]set-psk-server-credentials-file! cred file
Use file as the password file for PSK server credentials cred.

[Scheme Procedure]make-psk-server-credentials
Return new PSK server credentials.

[Scheme Procedure]peer-certificate-status session
Verify the peer certificate for session and return a list of certificate-status values
(such as certificate-status/revoked), or the empty list if the certificate is valid.

[Scheme Procedure]set-certificate-credentials-verify-flags! cred
[flags...]

Set the certificate verification flags to flags, a series of certificate-verify values.

[Scheme Procedure]set-certificate-credentials-verify-limits! cred
max-bits max-depth

Set the verification limits of peer-certificate-status for certificate credentials cred
to max bits bits for an acceptable certificate and max depth as the maximum depth
of a certificate chain.

[Scheme Procedure]set-certificate-credentials-x509-keys! cred certs
privkey

Have certificate credentials cred use the X.509 certificates listed in certs and X.509
private key privkey.

[Scheme Procedure]set-certificate-credentials-x509-key-data! cred cert
key format

Use X.509 certificate cert and private key key, both uniform arrays containing the
X.509 certificate and key in format format, for certificate credentials cred.

[Scheme Procedure]set-certificate-credentials-x509-crl-data! cred data
format

Use data (a uniform array) as the X.509 CRL (certificate revocation list) database for
cred. On success, return the number of CRLs processed.

Chapter 5: Guile Reference 32

[Scheme Procedure]set-certificate-credentials-x509-trust-data! cred
data format

Use data (a uniform array) as the X.509 trust database for cred. On success, return
the number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-crl-file! cred file
format

Use file as the X.509 CRL (certificate revocation list) file for certificate credentials
cred. On success, return the number of CRLs processed.

[Scheme Procedure]set-certificate-credentials-x509-trust-file! cred
file format

Use file as the X.509 trust file for certificate credentials cred. On success, return the
number of certificates processed.

[Scheme Procedure]set-certificate-credentials-x509-key-files! cred
cert-file key-file format

Use file as the password file for PSK server credentials cred.

[Scheme Procedure]set-certificate-credentials-dh-parameters! cred
dh-params

Use Diffie-Hellman parameters dh params for certificate credentials cred.

[Scheme Procedure]make-certificate-credentials
Return new certificate credentials (i.e., for use with either X.509 or OpenPGP certifi-
cates.

[Scheme Procedure]set-anonymous-server-dh-parameters! cred dh-params
Set the Diffie-Hellman parameters of anonymous server credentials cred.

[Scheme Procedure]make-anonymous-client-credentials
Return anonymous client credentials.

[Scheme Procedure]make-anonymous-server-credentials
Return anonymous server credentials.

[Scheme Procedure]set-session-dh-prime-bits! session bits
Use bits DH prime bits for session.

[Scheme Procedure]pkcs3-export-dh-parameters dh-params format
Export Diffie-Hellman parameters dh params in PKCS3 format according for format
(an x509-certificate-format value). Return a u8vector containing the result.

[Scheme Procedure]pkcs3-import-dh-parameters array format
Import Diffie-Hellman parameters in PKCS3 format (further specified by format, an
x509-certificate-format value) from array (a homogeneous array) and return a
new dh-params object.

[Scheme Procedure]make-dh-parameters bits
Return new Diffie-Hellman parameters.

Chapter 5: Guile Reference 33

[Scheme Procedure]set-session-transport-port! session port
Use port as the input/output port for session.

[Scheme Procedure]set-session-transport-fd! session fd
Use file descriptor fd as the underlying transport for session.

[Scheme Procedure]set-session-record-port-close! port close
Set close, a one-argument procedure, as the procedure called when port is closed. close
will be passed port. It may be called when close-port is called on port, or when
port is garbage-collected. It is a useful way to free resources associated with port such
as the session’s transport file descriptor or port.

[Scheme Procedure]session-record-port session [close]
Return a read-write port that may be used to communicate over session. All invocations
of session-port on a given session return the same object (in the sense of eq?).

If close is provided, it must be a one-argument procedure, and it will be called when
the returned port is closed. This is equivalent to setting it by calling set-session-

record-port-close!.

[Scheme Procedure]record-get-direction session
Determine whether GnuTLS was interrupted when sending or receiving from session.
This information can be used when deciding if to wait to be able to read or write from
a socket before retrying. Returns 0 if interrupted when reading and 1 if interrupted
when writing.

[Scheme Procedure]record-receive! session array
Receive data from session into array, a uniform homogeneous array. Return the
number of bytes actually received.

[Scheme Procedure]record-send session array
Send the record constituted by array through session.

[Scheme Procedure]set-session-server-name! session type name
For a client, this procedure provides a way to inform the server that it is known under
name, via the SERVER NAME TLS extension. type must be a server-name-type value,
server-name-type/dns for DNS names.

[Scheme Procedure]set-session-credentials! session cred
Use cred as session’s credentials.

[Scheme Procedure]cipher-suite->string kx cipher mac
Return the name of the given cipher suite.

[Scheme Procedure]set-session-priorities! session priorities
Have session use the given priorities for the ciphers, key exchange methods, MACs
and compression methods. priorities must be a string (see Section “Priority Strings”
in GnuTLS, Transport Layer Security Library for the GNU system). When priorities
cannot be parsed, an error/invalid-request error is raised, with an extra argument
indication the position of the error.

Chapter 5: Guile Reference 34

[Scheme Procedure]set-session-default-priority! session
Have session use the default priorities.

[Scheme Procedure]set-server-session-certificate-request! session
request

Tell how session, a server-side session, should deal with certificate requests. request
should be either certificate-request/request or certificate-request/require.

[Scheme Procedure]session-our-certificate-chain session
Return our certificate chain for session (as sent to the peer) in raw format (a u8vector).
In the case of OpenPGP there is exactly one certificate. Return the empty list if no
certificate was used.

[Scheme Procedure]session-peer-certificate-chain session
Return the a list of certificates in raw format (u8vectors) where the first one is the
peer’s certificate. In the case of OpenPGP, there is always exactly one certificate. In
the case of X.509, subsequent certificates indicate form a certificate chain. Return the
empty list if no certificate was sent.

[Scheme Procedure]session-client-authentication-type session
Return the client authentication type (a credential-type value) used in session.

[Scheme Procedure]session-server-authentication-type session
Return the server authentication type (a credential-type value) used in session.

[Scheme Procedure]session-authentication-type session
Return the authentication type (a credential-type value) used by session.

[Scheme Procedure]session-protocol session
Return the protocol used by session.

[Scheme Procedure]session-certificate-type session
Return session’s certificate type.

[Scheme Procedure]session-compression-method session
Return session’s compression method.

[Scheme Procedure]session-mac session
Return session’s MAC.

[Scheme Procedure]session-kx session
Return session’s kx.

[Scheme Procedure]session-cipher session
Return session’s cipher.

[Scheme Procedure]alert-send session level alert
Send alert via session.

[Scheme Procedure]alert-get session
Get an aleter from session.

Chapter 5: Guile Reference 35

[Scheme Procedure]reauthenticate session
Perform a re-authentication step for session.

[Scheme Procedure]rehandshake session
Perform a re-handshaking for session.

[Scheme Procedure]handshake session
Perform a handshake for session.

[Scheme Procedure]bye session how
Close session according to how.

[Scheme Procedure]make-session end [flags...]
Return a new session for connection end end, either connection-end/server or
connection-end/client. The optional flags arguments are connection-flag values
such as connection-flag/auto-reauth.

[Scheme Procedure]gnutls-version
Return a string denoting the version number of the underlying GnuTLS library, e.g.,
"1.7.2".

[Scheme Procedure]openpgp-keyring? obj
Return true if obj is of type openpgp-keyring.

[Scheme Procedure]openpgp-private-key? obj
Return true if obj is of type openpgp-private-key.

[Scheme Procedure]openpgp-certificate? obj
Return true if obj is of type openpgp-certificate.

[Scheme Procedure]private-key? obj
Return true if obj is of type private-key.

[Scheme Procedure]public-key? obj
Return true if obj is of type public-key.

[Scheme Procedure]cipher-hd? obj
Return true if obj is of type cipher-hd.

[Scheme Procedure]aead-cipher? obj
Return true if obj is of type aead-cipher.

[Scheme Procedure]hash? obj
Return true if obj is of type hash.

[Scheme Procedure]hmac? obj
Return true if obj is of type hmac.

[Scheme Procedure]x509-private-key? obj
Return true if obj is of type x509-private-key.

[Scheme Procedure]x509-certificate? obj
Return true if obj is of type x509-certificate.

Chapter 5: Guile Reference 36

[Scheme Procedure]psk-client-credentials? obj
Return true if obj is of type psk-client-credentials.

[Scheme Procedure]psk-server-credentials? obj
Return true if obj is of type psk-server-credentials.

[Scheme Procedure]srp-client-credentials? obj
Return true if obj is of type srp-client-credentials.

[Scheme Procedure]srp-server-credentials? obj
Return true if obj is of type srp-server-credentials.

[Scheme Procedure]certificate-credentials? obj
Return true if obj is of type certificate-credentials.

[Scheme Procedure]dh-parameters? obj
Return true if obj is of type dh-parameters.

[Scheme Procedure]anonymous-server-credentials? obj
Return true if obj is of type anonymous-server-credentials.

[Scheme Procedure]anonymous-client-credentials? obj
Return true if obj is of type anonymous-client-credentials.

[Scheme Procedure]session? obj
Return true if obj is of type session.

[Scheme Procedure]openpgp-certificate-format->string enumval
Return a string describing enumval, a openpgp-certificate-format value.

[Scheme Procedure]random-level->string enumval
Return a string describing enumval, a random-level value.

[Scheme Procedure]ecc-curve->string enumval
Return a string describing enumval, a ecc-curve value.

[Scheme Procedure]oid->string enumval
Return a string describing enumval, a oid value.

[Scheme Procedure]privkey->string enumval
Return a string describing enumval, a privkey value.

[Scheme Procedure]error->string enumval
Return a string describing enumval, a error value.

[Scheme Procedure]certificate-verify->string enumval
Return a string describing enumval, a certificate-verify value.

[Scheme Procedure]key-usage->string enumval
Return a string describing enumval, a key-usage value.

[Scheme Procedure]psk-key-format->string enumval
Return a string describing enumval, a psk-key-format value.

Chapter 5: Guile Reference 37

[Scheme Procedure]server-name-type->string enumval
Return a string describing enumval, a server-name-type value.

[Scheme Procedure]sign-algorithm->string enumval
Return a string describing enumval, a sign-algorithm value.

[Scheme Procedure]pk-algorithm->string enumval
Return a string describing enumval, a pk-algorithm value.

[Scheme Procedure]x509-subject-alternative-name->string enumval
Return a string describing enumval, a x509-subject-alternative-name value.

[Scheme Procedure]x509-certificate-format->string enumval
Return a string describing enumval, a x509-certificate-format value.

[Scheme Procedure]certificate-type->string enumval
Return a string describing enumval, a certificate-type value.

[Scheme Procedure]protocol->string enumval
Return a string describing enumval, a protocol value.

[Scheme Procedure]close-request->string enumval
Return a string describing enumval, a close-request value.

[Scheme Procedure]certificate-request->string enumval
Return a string describing enumval, a certificate-request value.

[Scheme Procedure]certificate-status->string enumval
Return a string describing enumval, a certificate-status value.

[Scheme Procedure]handshake-description->string enumval
Return a string describing enumval, a handshake-description value.

[Scheme Procedure]alert-description->string enumval
Return a string describing enumval, a alert-description value.

[Scheme Procedure]alert-level->string enumval
Return a string describing enumval, a alert-level value.

[Scheme Procedure]connection-flag->string enumval
Return a string describing enumval, a connection-flag value.

[Scheme Procedure]connection-end->string enumval
Return a string describing enumval, a connection-end value.

[Scheme Procedure]compression-method->string enumval
Return a string describing enumval, a compression-method value.

[Scheme Procedure]digest->string enumval
Return a string describing enumval, a digest value.

[Scheme Procedure]mac->string enumval
Return a string describing enumval, a mac value.

Chapter 5: Guile Reference 38

[Scheme Procedure]credentials->string enumval
Return a string describing enumval, a credentials value.

[Scheme Procedure]params->string enumval
Return a string describing enumval, a params value.

[Scheme Procedure]kx->string enumval
Return a string describing enumval, a kx value.

[Scheme Procedure]cipher->string enumval
Return a string describing enumval, a cipher value.

39

Appendix A Copying Information

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000–2023 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

https://fsf.org/

Appendix A: Copying Information 40

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

Appendix A: Copying Information 41

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

Appendix A: Copying Information 42

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at

Appendix A: Copying Information 43

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying Information 44

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

Appendix A: Copying Information 45

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place
of business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/licenses/

Appendix A: Copying Information 46

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

47

Procedure Index

%
%import-openpgp-certificate 28
%import-openpgp-private-key 28
%openpgp-certificate-algorithm 28
%openpgp-certificate-fingerprint 28
%openpgp-certificate-fingerprint! 28
%openpgp-certificate-id . 28
%openpgp-certificate-id! . 28
%openpgp-certificate-name 28
%openpgp-certificate-names 28
%openpgp-certificate-usage 28
%openpgp-certificate-version 28
%openpgp-keyring-contains-key-id? 28
%set-certificate-credentials-

openpgp-keys! . 27

A
aead-cipher-algorithm . 26
aead-cipher-decrypt . 26
aead-cipher-encrypt . 26
aead-cipher? . 35
alert-description->string 37
alert-get . 34
alert-level->string . 37
alert-send . 34
anonymous-client-credentials? 36
anonymous-server-credentials? 36

B
base64-decode . 24
base64-encode . 24
bye . 35

C
certificate-credentials? . 36
certificate-request->string 37
certificate-status->string 37
certificate-type->string . 37
certificate-verify->string 36
cipher->string . 38
cipher-add-auth! . 26
cipher-algorithm . 26
cipher-block-size . 26
cipher-decrypt . 26
cipher-encrypt . 26
cipher-hd? . 35
cipher-iv-size . 26
cipher-key-size . 26
cipher-set-iv! . 26
cipher-suite->string . 33
cipher-tag . 26

cipher-tag-size . 26
close-request->string . 37
compression-method->string 37
connection-end->string . 37
connection-flag->string . 37
credentials->string . 38

D
dh-parameters? . 36
digest->string . 37

E
ecc-curve->oid . 25
ecc-curve->pk-algorithm . 25
ecc-curve->string . 36
ecc-curve-list . 25
ecc-curve-size . 25
error->string . 5, 36
export-x509-certificate . 30
export-x509-private-key . 30

G
generate-private-key . 23
generate-x509-private-key 30
gnutls-random . 23
gnutls-version . 35

H
handshake . 35
handshake-description->string 37
hash! . 27
hash-algorithm . 27
hash-direct . 27
hash-length . 27
hash-output . 27
hash? . 35
hex-decode . 24
hex-encode . 24
hmac! . 27
hmac-algorithm . 27
hmac-direct . 27
hmac-length . 27
hmac-output . 27
hmac? . 35

Procedure Index 48

I
import-openpgp-keyring . 28
import-raw-dsa-private-key 24
import-raw-dsa-public-key 24
import-raw-ecc-private-key 24
import-raw-ecc-public-key 24
import-raw-rsa-private-key 24
import-raw-rsa-public-key 24
import-x509-certificate . 31
import-x509-private-key . 30

K
key-usage->string . 36
kx->string . 38

M
mac->string . 37
mac-nonce-size . 27
make-aead-cipher . 26
make-anonymous-client-credentials 32
make-anonymous-server-credentials 32
make-certificate-credentials 32
make-cipher . 26
make-dh-parameters . 4, 32
make-hash . 27
make-hmac . 27
make-psk-client-credentials 31
make-psk-server-credentials 31
make-session . 35
make-x509-certificate . 31

O
oid->ecc-curve . 25
oid->pk-algorithm . 25
oid->sign-algorithm . 25
oid->string . 36
openpgp-certificate-format->string 36
openpgp-certificate? . 35
openpgp-keyring? . 35
openpgp-private-key? . 35

P
params->string . 38
peer-certificate-status . 31
pk-algorithm->oid . 25
pk-algorithm->sign-algorithm 25
pk-algorithm->string . 37
pk-algorithm-list . 25
pkcs3-export-dh-parameters 4, 32
pkcs3-import-dh-parameters 32
pkcs8-import-x509-private-key 30
private-key->public-key . 24
private-key-decrypt-data . 23

private-key-export-raw-dsa 24
private-key-export-raw-ecc 24
private-key-export-raw-rsa 24
private-key-pk-algorithm . 23
private-key-sign-data . 23
private-key-sign-hash . 23
private-key? . 35
privkey->string . 36
protocol->string . 37
psk-client-credentials? . 36
psk-key-format->string . 36
psk-server-credentials? . 36
public-key-encrypt-data . 23
public-key-export . 23
public-key-export-raw-dsa 24
public-key-export-raw-ecc 24
public-key-export-raw-rsa 24
public-key-pk-algorithm . 23
public-key-preferred-hash-algorithm 23
public-key-verify-data . 23
public-key-verify-hash . 23
public-key? . 35

R
random-level->string . 36
reauthenticate . 35
record-get-direction . 33
record-receive! . 5, 33
record-send . 5, 33
rehandshake . 35

S
server-name-type->string . 37
server-session-psk-username 31
session-authentication-type 34
session-certificate-type . 34
session-cipher . 3, 34
session-client-authentication-type 34
session-compression-method 34
session-kx . 34
session-mac . 34
session-our-certificate-chain 34
session-peer-certificate-chain 34
session-protocol . 34
session-record-port . 5, 33
session-server-authentication-type 34
session? . 36
set-anonymous-server-dh-parameters! 32
set-certificate-credentials-

dh-parameters! . 32
set-certificate-credentials-

verify-flags! . 31
set-certificate-credentials-

verify-limits! . 31
set-certificate-credentials-

x509-crl-data! . 31

Procedure Index 49

set-certificate-credentials-

x509-crl-file! . 32
set-certificate-credentials-

x509-key-data! . 31
set-certificate-credentials-

x509-key-files! . 32
set-certificate-credentials-x509-keys! 31
set-certificate-credentials-

x509-trust-data! . 32
set-certificate-credentials-

x509-trust-file! . 32
set-hmac-nonce! . 27
set-log-level! . 27
set-log-procedure! . 27
set-psk-client-credentials! 31
set-psk-server-credentials-file! 31
set-server-session-certificate-request! . . . 34
set-session-credentials! . 33
set-session-default-priority! 34
set-session-dh-prime-bits! 32
set-session-priorities! . 33
set-session-record-port-close! 33
set-session-server-name! . 33
set-session-transport-fd! 4, 33
set-session-transport-port! 4, 33
set-x509-certificate-activation-time! 29
set-x509-certificate-ca-status! 28
set-x509-certificate-dn-by-oid! 29
set-x509-certificate-expiration-time! 29
set-x509-certificate-key! 29
set-x509-certificate-key-usage! 29
set-x509-certificate-serial! 28
set-x509-certificate-subject-key-id! 29
set-x509-certificate-version! 29
sign-algorithm->digest-algorithm 25
sign-algorithm->oid . 25
sign-algorithm->pk-algorithm 25
sign-algorithm->string . 37

sign-algorithm-is-secure? 25
sign-algorithm-list . 25
sign-algorithm-supports? . 25
sign-x509-certificate! . 29
srp-client-credentials? . 36
srp-server-credentials? . 36
string->ecc-curve . 25
string->pk-algorithm . 26
string->sign-algorithm . 26

X
x509-certificate->public-key 23
x509-certificate-activation-time 29
x509-certificate-authority-key-id 29
x509-certificate-ca-status 28
x509-certificate-dn . 30
x509-certificate-dn-oid . 30
x509-certificate-expiration-time 29
x509-certificate-fingerprint 29
x509-certificate-format->string 37
x509-certificate-issuer-dn 30
x509-certificate-issuer-dn-oid 30
x509-certificate-key-id . 29
x509-certificate-key-usage 30
x509-certificate-matches-hostname? 30
x509-certificate-public-key-algorithm 30
x509-certificate-serial . 28
x509-certificate-signature-algorithm 30
x509-certificate-subject-

alternative-name . 29
x509-certificate-subject-key-id 29
x509-certificate-version . 29
x509-certificate? . 35
x509-private-key->private-key 23
x509-private-key? . 35
x509-subject-alternative-name->string 37

50

Concept Index

B
buffering . 5
bytevectors . 4

C
constant . 3

E
enumerate . 3
errors . 5
exceptions . 5

F
FDL, GNU Free Documentation License 39

G
gnutls-error . 5

H
homogeneous vector . 4

S
SRFI-4 . 4

	1 Preface
	2 Guile Preparations
	3 Guile API Conventions
	Living on the cutting edge
	Enumerates and Constants
	Procedure Names
	Representation of Binary Data
	Input and Output
	Exception Handling

	4 Guile Examples
	Anonymous Authentication Guile Example
	Using GnuTLS as a cryptography library
	Hash Message Authentication Code
	Hash Digest Algorithms
	Authenticated Encryption
	Low-lovel encryption API
	Public key cryptography
	Generating random numbers
	Encoding binary data

	5 Guile Reference
	A Copying Information
	Procedure Index
	Concept Index

